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We investigate the fully relativistic spherical collapse model of a uniform distribution of mass
M with initial comoving radius χ∗ and spatial curvature k ≡ 1/χ2

k ≤ 1/χ2
∗ representing an over-

density or bounded perturbation within a larger background. Our model incorporates a perfect fluid
with an evolving equation of state, P = P (ρ), which asymptotically transitions from pressureless
dust (P = 0) to a ground state characterized by a uniform, time-independent energy density ρG.
This transition is motivated by the quantum exclusion principle, which prevents singular collapse,
as observed in supernova core-collapse explosions. We analytically demonstrate that this transition
induces a gravitational bounce at a radius RB = (8πGρG/3)

−1/2. The bounce leads to an exponential
expansion phase, where P (ρ) behaves effectively as an inflation potential. This model provides
novel insights into black hole interiors and, when extended to a cosmological setting, predicts a
small but non-zero closed spatial curvature: −0.07 ± 0.02 ≤ Ωk < 0. This lower bound follows
from the requirement of χk ≥ χ∗ ≃ 15.9 Gpc to address the cosmic microwave background low
quadrupole anomaly. The bounce remains confined within the initial gravitational radius rS = 2GM ,
which effectively acts as a cosmological constant Λ inside rS =

√
3/Λ while still appearing as a

Schwarzschild black hole from an external perspective. This framework unifies the origin of inflation
and dark energy, with its key observational signature being the presence of small but nonzero spatial
curvature, a testable prediction for upcoming cosmological surveys.

INTRODUCTION

The standard model of cosmology, rooted in the Big
Bang paradigm and the theory of General Relativity
(GR) with the addition of cosmological constant (Λ) and
cold dark matter (CDM), has been remarkably success-
ful in explaining key observations, such as the Cosmic
Microwave Background (CMB), the large-scale structure
of the Universe, and the accelerating cosmic expansion
attributed to dark energy. However, several fundamental
questions remain unresolved, such as the nature of the
initial singularity, the flatness and horizon problems (or
the origin of inflation), and the physical origin of dark
energy. These challenges have spurred the development
of alternative frameworks that seek to extend or comple-
ment the standard cosmological model. The nature of
CDM and the origin of the smallness of Λ have been the
central issues of modern cosmology.

A related problem is that of understanding the singular
collapse into a Black Hole (BH). Both problems can be
addressed when we consider the relativistic spherical col-
lapse of a local (finite) Friedmann-Lemaitre-Robertson-
Walker (FLRW) cloud within a larger background, as
shown in Fig.1. A cosmological bounce and an inflation-
ary phase can emerge naturally from two fundamental
assumptions: ρ̇ = 0 and k > 0, which simply follow from
considering a finite over-density of matter obeying the
quantum exclusion principle, which prevents the density
from overcoming some threshold value or ground state

FIG. 1. Graphical representation of the spherical collapse.
There are three uniform spherically symmetric distributions:
(i) outer background ρ̄, (ii) inner region with radius less than
R and larger mean density ρ > ρ̄, and (iii) empty space out-
side R. Two key ingredients of this configuration: a) the
inner region collapse is decoupled from the background, and
b) such gravitational bounded collapse is modeled in GR with
a global spatial curvature k > 0.

ρG.

Crucially, this quantum mechanism violates the strong
energy condition (SEC) in classical GR. As was shown in
[1], the bounce requires a non-zero local curvature k >
0. Both conditions sidestep the singularity GR theorems
proposed by [2], allowing us to formulate a novel solution
to a pivotal issue in cosmological theory.
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The bouncing scenario we formulate naturally extends
to the subsequent stage of inflationary expansion when
spatial curvature effects become negligible, resulting in
the resolution of the horizon and flatness problems. Since
the model is confined to a finite comoving region of space-
time, it introduces a finite comoving cutoff for super-
horizon perturbations, potentially explaining anomalies
in the CMB, such as the absence of structures beyond 66
degrees [3]. This is a unique aspect of the model that is
actually compatible with CMB observations, unlike the
standard framework of inflationary cosmology. The value
of this cut-off directly relates to a prediction of spatial
curvature k > 0.

A recent paper ([1]) has numerically solved the Newto-
nian spherical collapse equations with a polytropic equa-
tion of state (EoS) inspired by neutron star (NS) condi-
tions. It found bounces at or above nuclear saturation
density with equivalent GR behavior in a closed FLRW
metric. The GR bounce corresponds to the ground state
of the matter, characterized by P = −ρ (which is of-
ten termed a meta-stable state or quasi-deSitter in the
framework of standard inflation). Here, we elaborate on
the underlying mechanisms of this phenomenon and its
implications for cosmic evolution, and we find new ana-
lytical and numerical solutions for the bounce, which are
fully relativistic and within classical GR with a perfect
fluid P = P (ρ).

Our approach builds on the classical general rela-
tivistic treatment of a uniform, finite FLRW fluid ball
(also referred to as a patch or cloud) embedded in a
surrounding Schwarzschild vacuum spacetime, as stud-
ied by [4–6]. The dynamics of such configurations—in
both expansion and collapse—have been examined in
various contexts, including early treatments of relativis-
tic collapse by Thompson and Whitrow [7], and Bondi
[8], who focused on pressure-supported configurations
evolving toward black hole formation. Further develop-
ments by Smoller and Temple [9] provide exact solutions
featuring spherical shock waves, extending the Oppen-
heimer–Snyder model [10] to cases with non-zero pres-
sure.

Some earlier literature suggests that matching a FLRW
interior to a Schwarzschild exterior requires vanishing
pressure—i.e., P = 0 at the junction—to ensure met-
ric continuity across the density discontinuity. How-
ever, this restriction arises under the specific assump-
tion that the spherical junction radius must follow a
geodesic of the FLRW metric, typically parametrized as
R = a(τ)χ∗ with constant χ∗. In the presence of pres-
sure (P ̸= 0), the radius of the junction is no longer
a fixed comoving radial coordinate but evolves dynami-
cally, i.e., χ∗ = χ∗(τ), as shown explicitly in [11]. In this
case, a smooth matching of the FLRW and Schwarzschild
metrics is still possible without introducing any disconti-
nuity or requiring a surface layer with additional energy-
momentum content.

By contrast, a distinct class of solutions—often called
“bubble” or “baby universe” models—assumes a vacuum
de Sitter interior matched to a Schwarzschild exterior
[12–17]. These spacetimes are inherently discontinuous:
a smooth junction between two distinct vacuum solutions
(de Sitter and Schwarzschild) is not possible without an
intermediate surface layer carrying matter or tension, of-
ten modeled via a thin shell or bubble wall. Gravas-
tar models [18] are examples of such constructions. Our
setup, in contrast, considers a physically continuous met-
ric across the boundary of a matter-filled collapsing re-
gion embedded in vacuum. No additional surface term or
exotic matter layer is required, making it a straightfor-
ward realization of the classical spherical collapse frame-
work.

Naturally, our proposed model is also related to ex-
isting cosmological bouncing scenarios (such as [19–24]).
Several classes of such bouncing cosmologies have been
proposed in the literature. One prominent class in-
volves modified gravity theories, such as f(R) gravity and
Gauss–Bonnet extensions, which allow for non-singular
solutions that violate the strong energy condition (SEC)
within a classical framework [21, 25]. These models pro-
duce bounces through geometrical modifications of Ein-
stein’s equations, but often require fine-tuning and may
suffer from instabilities or lack of a clear quantum limit.
Another approach is rooted in applying loop quantum
gravity techniques to homogeneous and isotropic space-
times. In such a loop quantum cosmology, quantum
corrections to the Friedmann equations introduce a re-
pulsive force at Planckian densities, leading to a robust
bounce that replaces the classical singularity [26]. This
framework offers a well-defined and non-singular evolu-
tion at Planckian densities, but relies on the validity of
the quantum gravity formalism. A third class involves
effective matter models, in which exotic scalar fields pro-
duce violations of the SEC necessary for a bounce. These
kinds of models employ scalar fields with negative kinetic
terms or non-minimal couplings to achieve a non-singular
evolution [21, 27, 28] at the cost of introducing new de-
grees of freedom with ambiguous physical interpretation
or require extensions beyond standard quantum field the-
ory. More recent developments include bounces arising
from non-local gravity [29, 30], string-inspired cosmolo-
gies [31], and non-singular anisotropic models [32, 33].
Each of these introduces distinct mechanisms for evading
singularities. However, new complex or speculative ingre-
dients are required in these models. Despite the diversity
of all these approaches, a common limitation is the re-
liance on mechanisms beyond classical GR and standard
matter physics. In this context, our Black Hole Universe
(BHU) model, presents a novel framework where the ob-
servable Universe emerges from the gravitational collapse
of a finite, nearly homogeneous FLRW cloud of ordinary
matter in standard GR. It is worth noting here that when
we include quantum effects in curved spacetime, even if
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we initially start with classical fluid with positive pres-
sure, one gets negative pressure contributions as is shown
in the studies of semi-classical gravity [34–36]. The quan-
tum exclusion principle sets a new universal goal for the
theories of quantum gravity [37–39]. Although the full
study of quantum gravity is beyond the scope of this cur-
rent study, it lays a foundation for what the actual theory
of quantum gravity is supposed to achieve or to be con-
sistent with. However, a pre-requirement for a complete
theory of quantum gravity is the robust development of
quantum field theory in curved spacetime [40–42], which
we aim to develop in the future for the non-singular origin
of the Universe we present here.

The FLRW cloud bounce and subsequent inflation are
driven by the degenerate pressure P = −ρ, and this is
supported by the hypothesis of the quantum exclusion
principle, i.e., GR with quantum matter avoids singular-
ities, which aligns very well with Misner’s thoughts on
how quantum theory should avoid singularities [43]. A
new key ingredient for our approach is to consider a finite
cloud, which allows us to incorporate spatial curvature,
demonstrating its essential role in enabling the bounce.
Finally, we address how cosmic acceleration emerges as
a natural consequence of the bounce.

This work stands on its own, but it can also be used to
extend and complement the Black Hole Universe (BHU)
model ([44, 45]) with a closed FLRW cloud k > 0. The
flat case k = 0 used previously is a good approximation
all the way to the point where we approach the singu-
larity but does not allow for a bounce to occur. By con-
necting the early and late phases of cosmic evolution, it
provides a unified model that bridges gravitational col-
lapse, cosmic inflation, and the present accelerated ex-
pansion of the Universe. Grounded in physical principles
and supported by numerical simulations, this model of-
fers a compelling alternative to the standard cosmological
paradigm while addressing its unresolved challenges.

In this paper, we elaborate on the unified scenario in
which the observable Universe originates from the grav-
itational collapse and bounce of a finite, closed FLRW
cloud of matter. We begin by setting up the relativis-
tic spherical collapse model, emphasizing the critical role
of positive spatial curvature (k > 0) in describing a
bounded perturbation within a larger background. In
the following section, we generalize our scenario to non-
vanishing pressure and introduce a pressure contribution
motivated by the quantum exclusion principle. This ad-
ditional (degeneracy) pressure is related to a ground state
with a constant energy density and ultimately prevents
the singular collapse.

Building on this, the next sections we describe how
degeneracy pressure halts the collapse, leading to a grav-
itational bounce without requiring modifications to GR
and what the implications for cosmic inflation and accel-
eration are. In detail, we derive the exact analytical solu-
tion describing the bounce, demonstrate how the bounce

smoothly evolves into an inflationary phase, providing a
natural origin for cosmic inflation within the same rel-
ativistic framework and extend the model to late-time
cosmology. There we discuss how the finite mass and
size of the FLRW cloud imply an effective cosmological
constant, offering a physical interpretation for Λ in terms
of the BHU model. Through this sequence, we show how
gravitational collapse, bounce, inflation, and dark energy
can be understood as different phases of a single, continu-
ous process, rooted in classical GR combined with quan-
tum mechanical principles. We use c = 1 except when
otherwise stated.

SPHERICAL COLLAPSE P = 0

Here, we want to model the collapse of a finite cloud
or perturbation within a larger background. We will as-
sume that the initial cloud is a spherical overdense re-
gion of a perfect fluid that is surrounded by an empty
space, as shown in Fig.1. This configuration is em-
bedded in a larger volume containing a homogeneous,
more diluted fluid. We also assume that Λ = 0 or neg-
ligible to start with. For an observer moving with a
perfect fluid, the energy-momentum tensor is diagonal:
T ν
µ = diag[−ρ, P, P, P ], where ρ = ρ(τ, χ) is the rela-

tivistic energy density and P = P (τ, χ) is the pressure.
The cloud is initially very large and has a very low den-
sity, so the pressure and temperature can be neglected.
The relativistic solution to this problem was given by
[46] ‘atom universe’ and is known today as the Lemaitre-
Tolman-Bondi (LTB) model. The most general spheri-
cally symmetric metric in the comoving frame (i.e., mov-
ing with the fluid) is:

ds2 = gµνdx
µdxν = −dτ2+

(
∂r

∂χ

)2
dχ2

F 2(χ)
+r2dΩ2, (1)

where F (χ) is an arbitrary function of χ. For the flat
geometry, we have F 2 = 1. For the closed geometry case
we have F 2 = 1− kχ2:

ds2 = −dτ2 +
(
∂r

∂χ

)2
dχ2

1− kχ2
+ r2dΩ2, (2)

with k < 1/χ2. The physical radius (or aerial coordinate)
r = r(τ, χ) corresponds to the area distance and reflects
spherical symmetry. The functional form of gχχ results

from T 1
0 = G1

0 = 0 in the comoving frame. The general
solution to the Einstein field equation is:

H2 ≡
(
ṙ

r

)2

=
2GM(τ, χ)

r3
− kχ2

r2
, (3)

M(τ, χ) ≡ 4π

∫ χ

0

ρ(τ, χ′) r2
∂r

∂χ′ dχ
′ (4)

ρ̇ = −3Hρ , (5)
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where the over dots correspond to partial time deriva-
tives. The mass-energy M was introduced by [46] and is
sometimes called the active gravitational mass and co-
incides with the relativistic Misner-Sharp mass ([47]),
which is defined for the more general case with pressure
[48].

Assuming a homogeneous cloud ρ = ρ(τ) requires H
to also be homogeneous. Consequently, r = a(τ)χ and k
has to be constant. We then have:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
; ρ = ρi

(
a

ai

)−3

,(6)

M(χ) =
4π

3
r3ρ ; m ≡M(χ∗) = constant , (7)

where ρi = ρ(ai) and χ∗ = χ(ai) are the initial density
and comoving radius of the cloud so that the mass m
inside R = aχ∗ remains constant. Note that we use co-
moving units such that a = 1 at present. This is the same
solution as the FLRW solution, as expected. In general,
we can choose k to have any sign depending on the ini-
tial conditions. The case of interest here is k ≡ 1/χ2

k

with χk > χ∗, which corresponds to an overdensity. The
value of χk relates to the initial velocity Hi ≡ H(ai) of
the cloud when R = Ri ≡ aiχ∗:

1/(aiχk)
2 = 2Gm/R3

i −H2
i (8)

This reproduces the well-known result that a closed
FLRW model exactly mirrors the relativistic spherical
collapse model (see §87 in [49]). The empty region around
the collapsing overdense perturbation separates the per-
turbation from the background and will expand with
time. The corollary to Birkhoff’s theorem (the relativis-
tic version of Gauss law) ensures that the spherical col-
lapse evolution does not couple to the exterior spheri-
cally symmetric background (see [6]). In the Newtonian
approximation, positive curvature (k > 0) corresponds
to a system with negative total energy, where gravita-
tional attraction exceeds kinetic energy, leading to the
collapse of the cloud under its own gravity. In GR, spa-
tial curvature provides the geometric representation of a
gravitationally bound system. Just as a bound orbit in
Newtonian gravity (like a planet around a star) is con-
fined, a closed universe (or a collapsing region) in GR is
“confined” by its own curvature. The metric of our ini-
tial perturbation for χ < χk is therefore the same as the
one of a closed FLRW metric:

ds2 = gµνdx
µdxν = −dτ2 + a2

(
dχ2

1− kχ2
+ χ2dΩ2

)
.

(9)
Note that because χk is cosmologically large, the corre-
sponding curvature term k/a2 = 1/(a2χ2

k) is subdomi-
nant until a becomes sufficiently small a → 0. Note
that the solutions in Eqs.6-7, and also for Eqs.3-4, are
the same as those in the Newtonian spherical collapse

studied in [1]. The FLRW cloud is a local and finite LTB
solution in contrast to the standard FLRW metric, which
is usually assumed to be global and infinite. For χ < χ∗,
both solutions are the same because of the corollary to
Birkhoff’s theorem ( see [6]).
What happens in the LTB solution for χ > χ∗ in the

region of empty space ρ = 0 surrounding R? Lemaitre
also found a solution to this question. In §11 of [46],
he shows how variables can be changed to transform the
LTB metric into the static Schwarzschild metric. This
change of variables corresponds to a rest frame, that is
not comoving with the fluid, just as in the case of the
static version of the de-Sitter metric (i.e., see [50]). An-
other way to approach this question is to show that the
FLRW metric matches the Schwarzschild metric without
discontinuities in agreement with the junction conditions.
Two different versions of this approach were presented in
[51] and in §12.5.1 in [52]. Such matching solution is what
we call the FLRW cloud, which has the FLRW metric in-
side χ < χ∗ and the Schwarzschild metric outside χ∗ ([11]
also presented the case k = 0 and Λ = 0 for timelike and
null junctions).
The relativistic spherical collapse can be interpreted

either as a solution to an LTB metric, as in Lemaitre
(1933) original solution, or as a matching of two different
solutions (as in the above references, see also Appendix
A3 in [3]). Both solutions are identical. In the LTB
solution (i.e. Eq.3-7) the density has a discontinuity at
χ = χ∗:

ρ(τ, χ) =

{
ρ(τ) for χ < χ∗
0 for χ ≥ χ∗

, (10)

while keeping the spacetime metric continuous. The dis-
continuous density does not pose any problems here, be-
cause the extrinsic curvature still remains smooth. As
was shown in [11], the two metrics can be matched with-
out discontinuities. This is in contrast to, e.g., the con-
cept of Gravastars, where the matching of a (static) de
Sitter space inside with a Schwarzschild metric outside
requires a particular treatment of the junction. The dis-
continuous Tµν leads to a discontinuous extrinsic curva-
ture, which needs to be cured by the introduction of an
artificial thin shell of matter. This is not necessary in the
BHU model.
Let us consider the fate of an FLRW cloud once the

collapse has started. Analogously to any spherically sym-
metric matter distribution undergoing gravitational col-
lapse, the outer physical radius R = a(τ)χ∗ of the cloud
shrinks and eventually crosses inside the corresponding
Schwarzschild radius: R < rS = 2Gm. When this hap-
pens, the FLRW cloud becomes a BH according to
the exterior or superior observer. In contrast
to standard collapse scenarios, where the mass involved
is of stellar dimensions, here we consider cosmological
scales. Consequently, both rS and aiχ∗ ≫ rS are ex-
tremely large, and the corresponding densities are ex-
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tremely small. We can estimate the density at a given
time τ before the collapse to the singularity in the ab-
sence of any pressure

ρ =
τ−2

6πG
≃ 3.97× 10−13 M⊙

km3

[τ
s

]−2

. (11)

This is the solution to Eq.6 when the spatial curvature
term is neglected. If we take m to be as large as the mass
of our observable Universe (m ≃ 5 × 1022 M⊙), we find
from Eq.7 that at horizon crossing, r = rS = 2Gm/c2,
the density of the BH, ρ is

ρBH =
m

4π
3 r

3
S

=
3r−2

S c2

8πG
≃ 3.59×10−48 M⊙

km3 ≃ 4
protons

m3
.

(12)
At these low densities, it is reasonable to assume that
the thermal pressure P and temperature T are negligi-
ble because the time scale of the collapse is negligible
compared to the time scales for any interactions between
neutral particles. The cold collapse proceeds inside the
BH event horizon. Note in Eq.11 how even up to one
second before the singularity occurs, the density is small
compared to nuclear saturation density (SD) in atomic
nuclei or in NS:

ρ(τ = 1s) ≪ ρNS ≃ ρSD ≃ 1.4× 10−4 M⊙

km3 . (13)

SPHERICAL COLLAPSE P = P (ρ)

So far, we have considered the spherical collapse of a
FLRW cloud with a perfect uniform fluid and zero initial
pressure, P = 0. As the collapse proceeds, interactions
among particles lead to an effective pressure, modeled as
P = P (ρ). Due to the corollary of Birkhoff’s theorem
(the relativistic version of Gauss law), the FLRW cloud
solution inside χ∗ will be the same as the one for the in-
finite FLRW metric. The FLRW solution for the general
case of P = P (ρ), changes to:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (14)

ä

a
= −4πG

3
(ρ+ 3P ) ; ρ̇+ 3 H (ρ+ P ) = 0 , (15)

where we have set Λ = 0 for clarity. Even if Λ is non-zero,
its contribution can be neglected when we approach high
densities.

DEGENERACY PRESSURE

Here, we draw an analogy of our understanding of the
Universe with NSs and astrophysical black holes. As the
collapsing cloud approaches the singularity (a → 0), the
density ρ = a−3a3i ρi increases without bound. However,

once any fermionic constituent of the cloud reaches its
quantum ground state, the Pauli Exclusion Principle gen-
erates a degeneracy pressure, P = P (ρ), independent of
temperature. Remarkably, this degeneracy pressure and
the corresponding equilibrium density apply universally
to systems ranging from atoms to NS despite their vast
difference in mass—approximately 1057 times. For even
larger masses, such as the mass of the Universe (about
1022 times greater than that of a NS), the degeneracy
pressures of electrons, neutrons, or even quarks may not
suffice to halt the collapse. Indeed, for masses exceeding
the Tolman–Oppenheimer–Volkoff (TOV) limit of 2–3
M⊙, a black hole forms, and the collapse proceeds within
the event horizon, leaving the internal physics largely
unexplored. A version of the Pauli Exclusion Principle
should remain valid even under extreme conditions, as
no two fermions can occupy the same quantum state.
Thus, a new quantum ground state, characterized by a
maximum density ρG, could also emerge if electrons and
quarks are not fundamental, preventing a true singular-
ity. This notion lies at the heart of applying principles
of quantum theory in the context of gravity, which offers
a framework to circumvent singular collapse and explore
the limits of physical laws in extreme conditions.
In the central regions of the collapsing cloud, where the

bounce occurs, the pressure and density can be treated
as approximately uniform in the comoving frame. The
validity of this assumption was demonstrated in [1] using
hydrodynamical simulations.
We can see from Eq.15 that as ρ̇ → 0, the relativist

pressure P → −ρ. Appendix A shows one way to under-
stand this in terms of scalar fields, where the EoS plays
the role of the scalar potential V (ϕ).
We can define a cloud radius RG from Eq.7:

8πGρG
3

≡ rS
R3

G

. (16)

which corresponds to the radius RG of the cloud when
it reaches ρ = ρG if we neglect the effects of pressure.
For the mass of the Universe m = 5× 1022 M⊙ and when
assuming nuclear saturation density (SD) as a lower limit
ρG > ρSD (Eq.13):

RG < rSD = 4.4× 108 km ≃ 1.43× 10−14 Gpc . (17)

This value of RG represents the beginning of the transi-
tion into the ground state. The model transitions from
a state of constant total energy-mass (with a uniform
but evolving energy density) to a state of uniform and
time-invariant energy density.
We have found that the quantum exclusion principle

leads to a ground state where the relativistic equation
of state (EoS) becomes: P = −ρ. This EoS is funda-
mentally distinct from the one typically considered under
nuclear saturation in NSs. A key assumption for NS is
that GR is negligible at scales of inter-quantum interac-
tions. However, it is crucial to recognize that gravity is
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inherently nonlinear. The active mass-energy, as defined
in Eq.4, includes not only matter but also gravitational
energy, which can not be neglected. This behavior is also
captured in the relativistic continuity equation (Eq.15):

ρ̇ = −3H(ρ+ P/c2), (18)

where we have included c to illustrate that the second
term P/c2 is purely relativistic and does not appear in
the Newtonian equation. This equation demonstrates
that once a constant density is reached, the EoS natu-
rally transitions to P = −ρ (back in units of c = 1).
This behavior is not captured by Newtonian dynamics
(or relativistic corrections) and is, therefore, not present
in conventional EoS models for NS, emphasizing the ne-
cessity of considering relativistic effects in describing such
ground states. In the Newtonian approach, the pressure
only appears as a force in the Euler equation. The GR
analog of the Euler equation (or its first integral) is the
Hubble-Lemaitre law in Eq.14, which is independent of
pressure. The two approaches come together when we
combine the Euler equation with the continuity equation.

The other important difference between our comoving
EoS and the NS modeling is that we are considering the
collapse (and later expanding) phases and not a static
solution. So, our EoS lives in the comoving frame, while
NS EoS refers to a Newtonian rest frame. What does
the relativistic EoS look like in the rest frame? This is
presented in Appendix B.

BOUNCING SOLUTION

Bringing together the insights from the two previous
sections, we can now explore what happens during the
collapse of an FLRW cloud as it reaches its ground state
density somewhere above nuclear saturation. For a con-
stant P = −ρ = −VG, Eq.14-15 become:

ä

a
= +

8πG

3
ρG ≡ rS

R3
G

; ρ̇G = 0 , (19)

H2 =

(
ȧ

a

)2

=
rS
R3

G

− k

a2
. (20)

This corresponds to a gravitational bounce (ȧ = 0 and
ä > 0) at:

aB =

√
R3

G

χ2
krS

or R2
B = R3

G/rS . (21)

Note how it is critical that k > 0 (or χ2
k < ∞) to have

a bounce before the singularity (a = 0) occurs. The
bounce is only possible because both RG > 0 and the
cloud is finite (that is, χk < ∞ and rS < ∞). It is
physically inconsistent to perceive a bouncing scenario
in an infinite FLRW cloud. This is reflected above by

the mathematical fact that an infinite FLRW cloud has
no bounce.
The exact solution to Eq.20 is:

a =
aB
2

[
e−|∆τ |/RB + e+|∆τ |/RB

]
= aB cosh (∆τ/RB) ,

(22)
where |∆τ | is the time to/from the bounce (a = aB)
with a > aB, and RB is the radius of the cloud when it
bounces:

RB ≡ aBχ∗ =
√
R3

G/rS =

√
3

8πGρG
, (23)

which happens to be the gravitational radius of the
ground state ρG.

GAUSS CURVATURE SCALE

Recall from Eq.8 that χk needs to be larger than the
cloud boundary: χk > χ∗. The existence of χ∗ imposes
a natural cutoff in the spectrum of super-horizon pertur-
bations generated during collapse, bounce, or inflation.
This cutoff shows up in the CMB sky as:

θcut =
χ∗

χCMB
, (24)

where χCMB ≃ 13.8 Gpc is the comoving radial distance
to the CMB for ΩΛ ≃ 0.7 and H0 ≃ 70 km/s/Mpc.
Strong evidence for such a cutoff has been known since
COBE and confirmed by WMAP and Planck ([53–55]).
Reference [56] estimated the homogeneity scale to be

θcut ≃ 65.9± 9.2 degrees, (25)

which implies:

χ∗ ≃ 15.93± 2.22Gpc , (26)

which is the Gaussian curvature scale. This interpreta-
tion predicts a value Ωk today (a = 1) of:

Ωk ≡ −k
(

1

H0

)2

= −(0.07± 0.02)

(
χ∗

χk

)2

, (27)

which, for χk > χ∗, is consistent with a critical reanal-
ysis of the Planck Legacy 2018 data [57]. This result
also agrees with a previous independent way of modeling
the low quadrupole C2 measured in the WMAP power
spectrum [58]. The limits for Ωk above assume that the
homogeneity scale is the result of only χ∗. This also ex-
plains the low quadrupole C2 [56]. However, if the homo-
geneity scale or the low value of C2 has a different origin,
then the value of Ωk in the floating FLRW cloud could be
smaller. Inflation preceded by a bounce requires Ωk < 0,
and this could be found in upcoming cosmic surveys, as
indicated by the analysis in [57].
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COSMIC INFLATION

The solution in Eq.22 corresponds to an exponential
expansion (or collapse) after (or before) the bounce, lead-
ing to a de-Sitter phase, just as in standard cosmic in-
flation. As mentioned before, the EoS plays the role of
the inflation potential, and the actual solution is quasi-
de-Sitter as we approach the respective ground state of
the matter.

As an example, we can take the following toy ansatz
to interpolate from ρ ≃ ρG(a/aG)

−3 to ρ ≃ ρG:

ρ∗ ≡ ρ

ρG
=

1

1 + [(a− aB)/aG]3
, (28)

where a = aG + aB at the time when the density is half
of ρG and quantities with a star index (∗) are given in
units of ρG. Eq.14 becomes:

(ȧχk)
2 =

(a/aB)
2

1 + [(a− aB)/aG]3
− 1 . (29)

Solving this numerically, we can obtain the exact equa-
tion of state P (ρ), using Eq.15. For single field infla-
tion like Starobinsky: the number of e-folds is Ne =
2/(1 − ns) ≃ 57 (where ns is the scalar spectral in-
dex) [59]. The current bound on the tensor-to-scalar
ratio is < 0.028 ([60]). This solution corresponds to
aG ≃ 5.69 × 1024aB and is shown in Fig.2. The cor-
responding EoS follows:

P/ρG = −(ρ/ρG)
2 or P∗ = −ρ2∗ (30)

which corresponds to the generalized Chaplygin gas with
α = 2 [61].

The ground state is approached asymptotically, with
the density remaining constant even as the scale factor
grows or decreases exponentially. This behavior arises
because the active mass m is no longer constant, a purely
relativistic effect where the gravitational field itself con-
tributes non-linearly to the source term. Consequently,
the model transitions from a regime of constant energy-
mass, characteristic of a Newtonian solution, to one of
constant energy-density, which is inherently relativistic.

As mentioned before, the saturation densities in NSs
and the nucleus of an atom are comparable with Eq.13
despite the former having a mass 1057 times larger than
the latter. However, as discussed in [1], the densities
at which the condition P = −ρ is fulfilled for masses
much larger than that observed for NSs could be signifi-
cantly higher than that of Eq.13 so that the energy ρG of
the corresponding cosmic inflation could be much larger.
In Appendix A, we show a more detailed comparison of
P = P (ρ) with inflation parameters and CMB observa-
tions. The amplitude of CMB fluctuations relates to a
ground state that has energy densities much larger than
nuclear saturation. The quasi-scale invariant spectrum

and quantum parity features observed in the CMB (see
[62]) will also be reproduced with our bouncing solution.
In summary, a bounce driven by degeneracy pressure

could give rise to an epoch of cosmic inflation and re-
heating. This opens the possibility for an epoch of nu-
cleosynthesis and recombination similar to that in the
standard model (e.g., see [63]). Note that in standard
inflation, reheating requires an oscillatory scale factor
around the matter-dominated phase after the exponen-
tial expansion; in typical single field inflation: a(t) ∼
t2/3

(
1 + 1

Mt sin(Mt)
)
where M is inflaton mass. The

equivalent process in terms of P = P (ρ) is detailed in
Appendix A. This process has the potential to enable
nucleosynthesis and recombination in a manner similar
to the standard Big Bang model. More importantly, it
also provides an alternative framework for understanding
both early and late-time cosmic acceleration.

COSMIC ACCELERATION

There is compelling observational evidence that the
cosmic expansion is accelerating: ä > 0 [64–69]. This
acceleration appears to be dominated by the cosmological
constant Λ. The Λ term can be interpreted either as
a fundamental modification of General Relativity (GR),
denoted as ΛF, or as an effective dark energy (DE) fluid,
ΛDE, analogous to the ground state ψ described earlier,
but with a much smaller energy density, ρG = ρDE.
Regardless of the interpretation, the corresponding

characteristic length scale,

RΛ =
√

3/Λ, (31)

is vastly larger than the nuclear saturation scale RG (i.e.,
8πρG ≫ Λ). Consequently, Λ can be neglected in our dis-
cussion of the gravitational bounce and the correspond-
ing inflationary period.
The measured value of Λ is extremely small but non-

zero, and its fundamental origin remains an open ques-
tion. Although its connection to the fundamental laws of
physics is unclear, its effect is well understood: it induces
an event horizon, RH, in FLRW space-time:

RH = a

∫
dτ

a
= a

∫
da

Ha2
< RΛ, (32)

beyond which regions (R > RH) are not causally con-
nected to the interior (R < RH). The standard assump-
tion in cosmology is that the Universe beyond RH is iden-
tical to the interior. However, this assumption presents
two fundamental issues:

• Lack of causal explanation: The standard approach
cannot provide a mechanism to explain how the
Universe could be the same beyond RH. Cosmic
inflation does not solve this puzzle because even
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under exponential expansion a ∼ eτH, we have that
R is always R < RH. This is because the comov-
ing distance traveled by light during Λ domination
χ =

∫∞
a

da
Ha2 = 1

aH exactly cancels the exponential
expansion in R = aχ.

• Violation of the variational principle: Einstein’s
field equations require that the metric asymptot-
ically approaches Minkowski space at large dis-
tances, which is not satisfied if the FLRW universe
extends indefinitely. At any given cosmic time (e.g.,
the present), the FLRW universe has the same fi-
nite, non-zero uniform density everywhere, includ-
ing at spatial infinity. Hence, it is not asymptot-
ically Minkowski. Even when the matter-energy
content vanishes with time, the asymptotic metric
is de Sitter and not Minkowski.

Instead, if we assume that the region beyond RH is
empty, both of these issues are resolved. This leads to a
finite universe with size RH → RΛ and a finite total mass
m contained within it. The exterior is then naturally
described by the Schwarzschild metric. This agrees well
with the FLRW cloud model presented here in previous
sections and in Fig.1. For consistency, we need to identify
RΛ with the Schwarzschild radius:

RΛ = rS = 2Gm. (33)

as both quantities are constant. This immediately pro-
vides a physical interpretation of Λ:

Λ =
3

r2S
. (34)

Thus, Λ simply corresponds to the total mass m of our
finite Universe. This also explains why Λ is small but
nonzero: it is directly linked to the total mass of the
Universe as in our FLRW cloud model. Thus, the mea-
surement of a Λ can be interpreted as a measurement
of m and a confirmation that we live within a large but
finite FLRW cloud model. This is also consistent with
our new interpretation of the origin of the bounce and
cosmic inflation presented here.

This reasoning provides a straightforward and intuitive
explanation of Λ without requiring detailed calculations.
Such calculations are presented in [11]. By applying the
relevant matching conditions, it is found that the radial
null geodesics RH satisfy Israel’s matching conditions and
that the action principle correctly includes the extrinsic
curvature boundary term, K = 2/rS.
This boundary interpretation of Λ corresponds to the

Black Hole Universe (BHU) model. For observational
values ΩΛ ≃ 0.70 and H0 ≃ 70 km/s/Mpc, we obtain:

rS =
c

H0

√
ΩΛ

≃ 5.1± 0.1Gpc, (35)

m = (5.4± 0.1)× 1022 M⊙ , (36)

with uncertainties from [70]. Note that rs < χ∗ in Eq.26,
which indicates that the perturbation form before becom-
ing a black hole.

DISCUSSION AND CONCLUSION

This paper presents a novel solution to the relativis-
tic spherical collapse model for a bounded perturbation
(k > 0). The key innovation lies in the introduction of
a variable equation of state, P = P (ρ), which asymptot-
ically evolves from a pressureless, homogeneous state to
a ground state characterized by a time-independent en-
ergy density. This transition naturally gives rise to a de
Sitter phase in the final stages of collapse—immediately
preceding the bounce—and persists throughout the en-
suing expansion. The bounce itself admits an analytical
expression, provided in Eq. 22.
The cosmological implication of this new approach is

a novel understanding of the origin of the universe that
emerges from the collapse and subsequent bounce of a
spherically symmetric matter distribution. We show that
upon reaching a quantum ground state, the relativistic
matter equation of state (EoS) transitions from P = 0 to
P = −ρ in the comoving frame. The relativistic degen-
erate pressure generated in this state halts the collapse
and initiates a bounce and an inflationary expansion. We
discussed how this mechanism parallels phenomena in
NS physics and core-collapse supernovae (see reviews by
[71–74]), where the ground state is determined by nucle-
onic or quark interaction potentials within proto-NS. On
the other hand, the expansion mechanism right after the
bounce also parallels that of cosmic inflation, as detailed
in Appendix A.
The non-singular bounce that happens inside a closed

FLRW cloud (i.e., a finite-sized Universe trapped inside
an event horizon) is induced by quantum matter EoS,
which results in degenerate negative pressure. This same
process drives an exponential expansion analogous to cos-
mic inflation, offering a novel solution to key challenges
in standard cosmology, such as the origin of inflation and
dark energy. Our findings highlight the profound impli-
cations of relativistic quantum principles in shaping the
early Universe.
We start from a low-density cloud with aiχ∗ ≫ rS

where ai ≫ 1 is the adimensional scale factor in units of
the value today a = 1. The key simplicity of this model is
that the BH is not an ad-hoc initial condition to our sys-
tem but a consequence of gravitational collapse. Without
this, there is no argument for Λ = 3/r2S. This will happen
for any initial condition where the initial density is suffi-
ciently low. Harrison-Zeldovich-Peebles [75–77] indepen-
dently argued that gravitational instability alone (with-
out inflation) would naturally produce a scale-invariant
spectrum of perturbations out of an FLRW metric. Such
perturbations will give rise to overdensities such as the
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FIG. 2. Left: EoS (P = P (ρ), blue, and ρ, cyan) in units of ρG, derived using the numerical solution of Eq.29 and Eq.15.
These are compared with ρ from the P = 0 case (black dotted) and the polytropic fit P∗ = −ρ2∗ (dashed magenta). Middle:
comparison of the different solutions for scale factor—the analytic solution presented in Eq.22, the numerical solution of Eq.29
for 57 e-folds of inflation, and the singular pressureless solution denoted with dashed, solid and dotted lines respectively. Right:
zoom-in around the bouncing region, where we compare the analytical bounce solution in Eq.22 and the full numerical solution
for a(τ) in Eq.30 for 1.2 e-folds, with the Newtonian numerical simulations ([1]), with different polytropic EoS for nuclear
saturation in NSs: P = Kργ with γ = 2− 3.

ones considered here as the starting point to our Uni-
verse. This is our new guess for the “initial condition”.

Figure 3 shows the full evolution of the finite FLRW
cloud radius, R(τ), illustrating how the horizon problem
is resolved within the bounce model. In the middle panel
of Figure 2, we now present the exact bouncing solution,
comparing the analytical expression for the scale factor
a(τ) given in Eq. 22 with the numerical solution of Eq. 29.
For reference, we also plot the singular analytic solution
for P = 0. Such singular behavior is unavoidable for
an infinite cloud (χ∗ = ∞ or rS = ∞) or in a flat or
open geometry (k ≤ 0). Note how the inflationary phase
has the right number of e-folds Ne = 2/(1 − ns) ≃ 57
consistent with the scalar spectral index ns measured by
Planck [59].

It is evident that the analytic solution in Eq. 22 is valid
only for the inflationary phase, i.e., near the bounce,
whereas the numerical solution accounts for the entire
evolution, including the pre-bounce phase when P ≈ 0.
Before reaching the bounce, the numerical solution fol-
lows the pressureless analytic case closely, which is ex-
pected since the pressure is initially vanishing and then
transitions smoothly into a constant (negative) degener-
acy pressure (P∗ = −ρ∗), as shown in the left panel. In
this regime, the equation of state (EoS) is well approx-
imated by P∗ = −ρ2∗ (dashed line). When we plot the
pressure calculated for the numerical model (labeled e57)
as a function of the corresponding density and fit it, the
fitting curve is P = Kργ with K ≃ −1 and γ ≃ 2. This
can be interpreted as a polytropic EoS with γ = 2.

Furthermore, the transition point is clearly marked: as
soon as pressure begins to build up, the numerical solu-
tion in the middle panel shifts from the analytic P = 0
solution (dotted line) to the analytic bounce solution
(dashed line), denoting exponential collapse and vice-
versa for exponential expansion.

The right panel provides a zoomed-in view of the
bounce region, where we compare our asymptotic an-
alytical solution with the numerical Newtonian simula-
tions of [1], which adopt an equation of state of the form
P = Kργ . This type of EoS serves as a reasonable ap-
proximation for nuclear degenerate matter, with γ = 2
to 3, in the Newtonian framework [78]. While the New-
tonian simulations remain an approximation, we observe
that both models yield a strikingly similar exponential
expansion post-bounce, as also noted by [1]. Note that
the Newtonian simulation results presented here are for
a 20 M⊙ cloud, for which the bounce occurs at around
nuclear saturation densities and the expansion has ≈ 1.2
e-folds. For larger masses, we will have a larger num-
ber of e-folds as in the middle panel for the mass of our
Universe.

The analytic solution we found in Eq.22 is one of the
cases considered in Eq.7 in [20], which corresponds to a
de-Sitter Universe with closed curvature. Instead of de-
generacy pressure, this model arises from quadratic cur-
vature modification of the Einstein-Hilbert action moti-
vated by 1-loop self-energy contributions due to quantum
matter, which leads to the first model of cosmic infla-
tion ([79]). But the reason to consider closed curvature
(other than to produce a bounce as in [19]) is not clear
in this model. In the BHU model, the spatial curvature
naturally results from the spherical collapse of a large
overdensity confined to a finite region of spacetime.

Figure 3 in [11] illustrates how the boundary R(τ) of
the FLRW cloud is always outside the observational win-
dow for any (off-centered) observer inside the cloud. This
is a general property of quasi-de-Sitter space and implies
that the BHU does not result in observed anisotropies in
the background of the cloud boundary. But the bounce
and the initial cloud’s comoving radius χ∗ can result in a
cutoff of the super-horizon quantum perturbations gener-
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FIG. 3. Time evolution in the radius of the FLRW cloud R(τ) = a(τ)χ∗, first forming a BH and then bouncing inside to
form our current observed expanding Universe. The black circle represents the FLRW cloud gravitational radius, which is also
the asymptotic Λ event horizon of our current expansion. The red dashed and blue dotted lines and circles correspond to the
FLRW cloud radius and the Hubble radius rH = c/H. This figure has been adapted from [44]. Licensed under CC-BY.

ated during inflation, which can be observed in the CMB
[3, 56, 80] and results in the constraint given by Eq.26.
Such cutoff, together with parity asymmetry, predicts a
lower quadrupole, which can explain several other CMB
anomalies (see [42, 62, 81]).

Our analysis shows that the observed cosmological con-
stant Λ can be interpreted as a boundary effect from the
gravitational radius of the BHU, aligning with the idea of
an effective Λ term without invoking exotic physics. The
implications of this model extend to the generation of
super-horizon perturbations, the observed entropy ratio
of baryons to photons, and the potential origins of dark
matter ([82]). Future studies should explore the role of
temperature and radiation in nuclear fusion during the
bounce to provide a more comprehensive understanding
of the transition from collapse to expansion.

The main limitation of our model is the simplifying as-
sumptions of uniformity and spherical symmetry. How-
ever, in contrast to molecular or protostellar clouds, the
collapsing fluid in the FLRW cloud is not expected to
fragment or form clumps. The gravitational collapse is
almost completely determined by GR and occurs much
smoother due to the nearly homogeneous, and cold ini-
tial state. Nevertheless, small deviations from unifor-
mity may lead to localized overdensities at later stages.
If these regions exceed a critical threshold before the
bounce, they could undergo gravitational collapse and
form compact remnants, such as primordial neutron stars
or black holes, through purely relativistic gravitational
instability. This process is distinct from the cooling-
driven fragmentation seen in molecular clouds, because in
our scenario there is no radiative cooling mechanism. If
sufficiently abundant and long-lived, such objects could

naturally provide a non-particle dark matter candidate
within the BHU scenario [44], analogous to but distinct
from standard primordial black holes. It should be em-
phasized that this possibility remains theoretical and re-
quires further validation.

A realistic treatment calls for a fully relativistic model
of gravitational collapse and bounce within standard GR,
incorporating realistic equations of state and boundary
conditions, as well as numerical simulations to track the
evolution of perturbations through the bounce phase.
Furthermore, quantum effects are expected to become
significant close to the bounce, potentially modifying
both the collapse dynamics and the fate of compact rem-
nants. Exploring these quantum effects represents an
important avenue for future investigation.

The smoking gun for our bouncing scenario is the pres-
ence of both a small spatial curvature and a small Λ term.
While the latter has already been measured with high
precision, the former remains a testable prediction (given
here in Eq. 27) for upcoming cosmological surveys. The
Planck PR3 lensed power spectrum revealed a 3σ prefer-
ence for positive curvature [83], with Ωk ≃ −0.04± 0.01,
in agreement with our Eq. 27. Recent results from ACT
[84] similarly suggest a slight preference for positive cur-
vature (see their Fig. 9), although the current uncertain-
ties remain too large to decisively rule out a flat universe.
The latest DESI data [85] echo this trend, also hinting
at a mild preference for positive curvature. Together,
the ACT and DESI results support a growing pattern:
when multiple high-precision datasets are combined, per-
sistent tensions with the standard ΛCDM model begin
to emerge. Notably, the combination of DESI and CMB
data reveals 3σ evidence for a Λ term that evolves (re-
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duces) slowly over cosmological time. In our framework,
where Λ = 3/r2S, this corresponds to an increasing FLRW
cloud mass m over time. If confirmed, this could be
due to mass accretion into the BHU. On the contrary,
a decreasing FLRW cloud mass could be interpreted as a
signature of quantum horizon effects—such as black hole
evaporation via Hawking radiation [40, 41, 86]. Nonethe-
less, individual cosmological measurements have not yet
yielded definitive evidence for departures from the stan-
dard ΛCDM scenario.
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Appendix A: Analogy with Scalar Field

We can model the quantum ground state of nuclear
saturation by introducing a scalar degree of freedom
ψ = ψ(xα). Consider the Einstein-Hilbert action with
minimally coupled matter fields with Lagrangian L:

S =

∫
V4

dV4

[
R

16πG
+ L

]
, (37)

The energy-momentum Tµν is defined as:

T µν ≡ − 2
√
g

δ(
√
−gL)

δgµν
= gµνL − 2

∂L
∂gµν

. (38)

The least action principle with respect to the metric gµν
yields Einstein field equations:

δS

δgµν
= 0 → Gµν ≡ Rµν −

1

2
gµνR = 8πGT µν , (39)

For the Lagrangian, we consider a combination of a per-
fect fluid and an effective minimally coupled scalar field
ψ = ψ(xα) with: L = Lm+Lψ, where Lψ = 1

2∇̄
2ψ−V (ψ)

and Lm is the standard matter-energy content. We have
defined ∇̄2ψ ≡ ∂αψ∂

αψ and V (ψ) is the potential of the
classical scalar field ψ. We will next explore the regime
where L is dominated by Lψ. If both Lm and Lψ con-
tributions are not coupled, then the general result would
correspond to just adding both contributions to P and
ρ. We can estimate the contribution of the scalar field
T µν(ψ) from equation (38):

T µν(ψ) = ∂µψ∂νψ − gµν

[
1

2
∇̄2ψ − V (ψ)

]
. (40)

Choosing an observer that is moving with the fluid and
comparing it to a perfect fluid, we can identify (see also
equations B66-B68 in [87]):
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1
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ψ̇2 − V (ψ) , (41)

https://doi.org/10.1023/A:1018855621348
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1007/s10714-015-1926-0
https://doi.org/10.1007/s10714-015-1926-0
https://arxiv.org/abs/1506.06358
https://doi.org/10.3390/sym16091141
https://doi.org/10.1119/1.17460
https://doi.org/10.1119/1.17460
https://arxiv.org/abs/https://pubs.aip.org/aapt/ajp/article-pdf/62/9/788/12077534/788_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aapt/ajp/article-pdf/62/9/788/12077534/788_1_online.pdf
https://doi.org/10.1086/310076
https://arxiv.org/abs/astro-ph/9601061
https://arxiv.org/abs/astro-ph/9601061
https://doi.org/10.1086/377226
https://arxiv.org/abs/astro-ph/0302209
https://doi.org/10.1051/0004-6361/201935201
https://arxiv.org/abs/1906.02552
https://doi.org/10.1088/1475-7516/2022/04/044
https://doi.org/10.1088/1475-7516/2022/04/044
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1038/s41550-019-0906-9
https://arxiv.org/abs/1911.02087
https://doi.org/10.1046/j.1365-8711.2003.06940.x
https://arxiv.org/abs/astro-ph/0303127
https://arxiv.org/abs/astro-ph/0303127
https://doi.org/10.1051/0004-6361/201321569
https://arxiv.org/abs/1303.5082
https://doi.org/10.1088/1475-7516/2023/04/062
https://arxiv.org/abs/2208.00188
https://doi.org/10.1103/PhysRevD.69.023004
https://doi.org/10.1103/PhysRevD.69.023004
https://arxiv.org/abs/astro-ph/0307533
https://doi.org/10.1088/1475-7516/2024/06/001
https://doi.org/10.1088/1475-7516/2024/06/001
https://arxiv.org/abs/2401.08288
https://doi.org/10.1086/300499
https://arxiv.org/abs/astro-ph/9805201
https://arxiv.org/abs/astro-ph/9805201
https://doi.org/10.1086/306308
https://doi.org/10.1086/306308
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1086/379848
https://doi.org/10.1086/379848
https://arxiv.org/abs/astro-ph/0307249
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512
https://doi.org/10.1051/0004-6361/201423413
https://doi.org/10.48550/arXiv.2404.03002
https://doi.org/10.48550/arXiv.2404.03002
https://arxiv.org/abs/2404.03002
https://arxiv.org/abs/2404.03002
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1086/176188
https://doi.org/10.1086/176188
https://arxiv.org/abs/astro-ph/9506061
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1093/ptep/pts067
https://doi.org/10.1093/ptep/pts067
https://arxiv.org/abs/1211.1378
https://doi.org/10.1016/j.physrep.2007.02.003
https://doi.org/10.1016/j.physrep.2007.02.003
https://arxiv.org/abs/astro-ph/0612440
https://doi.org/10.1093/mnras/stab1193
https://doi.org/10.1093/mnras/stab1193
https://doi.org/10.48550/arXiv.2403.05587
https://doi.org/10.48550/arXiv.2403.05587
https://doi.org/10.3390/sym14101984
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.48550/arXiv.2503.14452
https://doi.org/10.48550/arXiv.2503.14452
https://arxiv.org/abs/2503.14452
https://arxiv.org/abs/2503.14738
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://doi.org/10.1103/PhysRevD.89.043527


13

where we have defined ψ̇ ≡ ∂0ψ. The ground state ΨG

of the system corresponds to the configuration in which
the energy is minimized. In a relativistic context, this
often means that the kinetic contributions (derived from
the gradient terms ∂µψ) become insignificant compared

to the potential energy VG ≡ V (ψG) ≫ ψ̇2
G. This simply

means that the total energy is dominated by the potential
energy. We expect something similar to happen when
the collapsing cloud reaches the ground state at some
supra-nuclear densities in a cold collapse. The dynamics
will be dominated by the potential of the interaction of
quantum particles, and their kinetic energy will not play
a significant role in the evolution at the bounce. Close
to the ground state, V < VG. During its evolution, first,
the cloud ascends (rolls up) towards the potential VG
as it collapses, and after the bounce, it descends (rolls
down). Analogously to the scalar field considered here, a
fluid with a given EoS will reach some saturation density
ρ = ρG = VG = −PG = constant. Consequently, the
EoS plays a role in the scalar potential.

If we take ns = 0.9649 ± 0.0042 (Planck
TT+TE+EE+LowE+Lensing) at k∗ = 0.05Mpc−1 from
the Planck data [88]) we find (considering the spectral
index derived for Starobinsky-like inflationary scenario
[89]:

Ne =
2

2ϵ+ η
=

2

(1− ns)
≃ 56.98+7.74

−6.09 . (42)

where ϵ = − Ḣ
H2 , η = ϵ̇

Hϵ are the slow-roll parameters that
characterize the inflationary expansion after the bounce.

These are related to energy density ρ and pressure P =
P (ρ) EoS as (in the units of c = 1)

ϵ =
(ρ+ P )

H2
, η =

ϵ̇

Hϵ
=

2

H2
(ρ+ P )− 3

(
1 +

Ṗ

ρ̇

)
(43)

which are small during the inflationary expansion, which
is followed by (quasi-de Sitter) bounce that occurs in our
model due to negative degeneracy pressure. In the case
of Starobinsky or Higgs inflation ϵ ≈ 3

4N2
e
, η ≈ 2/Ne.

The primordial power spectrum (of curvature pertur-
bation ζ) in the framework of single-field slow-roll infla-
tionary models is

Pζ = As

(
k

ks

)ns−1

, As =
H2

inf

m2
P8π

2ϵ

∣∣∣∣∣
k=ks

(44)

where ks = 0.05Mpc−1 is the pivot scale chosen by the
Planck data, As is the amplitude of the power spectrum,
which at the pivot scale measured to be As ∼ 2.2×10−9,
Hinf is the value of Hubble parameter during inflation

and ϵ = − Ḣinf

H2
inf

≪ 1 is the known as slow-roll parameter

that measures how slowly Hubble parameter varies dur-
ing inflation. Using the observational constraint on the

amplitude of the power spectrum, the Hubble parameter
during inflation can be estimated to be

Hinf =
√
8π2ϵ

√
2.2× 10−9mP ≈ 4.17× 10−4

√
ϵmP

(45)
In the case of Starobinsky inflation ϵ = 3

4N2
e
which yields

Hinf ≈ 6.33+0.76
−0.76 × 10−6mP.

Although the above measurements are much smaller
than the Planck values, they remain significantly larger
than the nuclear saturation scale given in Eq. 13. This
suggests the existence of a higher-energy ground state be-
yond neutral saturation. In particular, this energy scale
is comparable to those typically considered in inflation-
ary models, such as Starobinsky-like inflationary models
[89]. Moreover, it aligns with the observed normaliza-
tion of the CMB temperature power spectrum, As, at
the pivot scale k∗ = 0.05Mpc−1, reinforcing its relevance
in early-universe physics.

Appendix B: Relativistic EoS in the rest frame

Consider a change in variables from comoving coor-
dinates xν = [τ, χ] to rest frame coordinates ξα = [t, r],
where r = a(τ)χ is the rest frame radial coordinate, while
angular variables (θ, δ) remain the same. The most gen-
eral form for a metric with spherical symmetry can be
written in terms of Bardeen potentials Ψ(t, r) and Φ(t, r)
as:

ds2 = fαβdξ
αdξβ = −(1 + 2Ψ)dt2 +

dr2

1 + 2Φ
+ r2dΩ2

(46)
The FLRW comoving metric gµν in Eq.9 transforms into
the rest frame FLRW metric in Eq.46 as:

gµν = ΛαµΛ
β
νfαβ , (47)

Λαµ ≡ ∂ξα

∂xµ
=

(
∂τ t ∂χt
∂τr ∂χr

)
(48)

where the angular part is the identity matrix. Explicitly:

ΛT
(
−(1 + 2Ψ) 0

0 (1 + 2Φ)−1

)
Λ =

(
−1 0
0 ā2

)
(49)

where ā2 ≡ a2/(1 − kχ2). The general solution to these
equations is:

Λ =

(
(1 + 2ΦW)−1 ārH(1 + 2ΦW)−1

rH ā

)
(50)

(1 + 2ΦW)2 ≡ (1 + 2Ψ)(1 + 2Φ) (51)

where ΦW = ΦW(t, r) is the Weyl potential, where 2Ψ
is arbitrary and 2Φ = r2H2 with H = H(τ) = H(t, r).
This frame duality can be interpreted as a Lorentz con-
traction γ = 1/

√
1− u2 where the velocity u is given by

the Hubble-Lemaitre law: u = Hr = u(t, r). An ob-
server in the rest frame, not moving with the fluid, sees
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the moving fluid element adχ contracted by the Lorentz
factor γ: adχ = γdr = dr/

√
1− r2H2 [50].

We can now use the inverse transformation, Λ̄ ≡ Λ−1,

in Eq. 50 to determine the energy-momentum tensor T̄
β
α

in the rest frame:

T̄
β
α = fγβT̄ αγ = fγβΛ̄µαΛ̄

ν
γgνσT

σ
µ

=
1

1− u2

(
−ρ− u2P u(ρ+P )

(1+2ΦW)

− u(ρ+P )
(1+2ΦW) P + u2ρ

)
(52)

We observe that the off-diagonal terms are generally
nonzero, indicating that the fluid is moving in the rest
frame (u ̸= 0), as expected. Furthermore, the stress-

energy tensor T̄
β
α is no longer uniform, even when P and

ρ are, implying that both the rest-frame relativistic pres-
sure P̄ and energy density ρ̄ depend on time and radius,
(t, r). At the center (r = 0), the energy density and pres-
sure are the same in both frames, i.e., ρ̄ = ρ and P̄ =
P . Neglecting the off-diagonal terms—corresponding to

large values of Ψ, small u, or the near-degenerate case
P ≈ −ρ—we can explicitly express the radial dependence
in terms of u = u(t, r) = rH(t, r):

ρ̄ =
ρ+ u2P

1− u2
, P̄ =

P + u2ρ

1− u2
. (53)

In the limit of degenerate pressure (the ground state),
where P = −ρ, the energy density and pressure remain
unchanged in both frames, i.e., ρ̄ = ρ and P̄ = P .

We conclude that the EoS used in the conventional
Newtonian approach to stationary NS has little in com-
mon with the EoS in the exact analytical collaps-
ing/expanding uniform solutions in GR. Despite this, [1]
found that numerical solutions for the Newtonian spher-
ical collapse with the EoS parameters inspired by typical
NS conditions exhibit remarkable similarities to the exact
GR problem presented here when mapped to the equiv-
alent uniform GR problem in the comoving frame.
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